

Tetrahedron: Asymmetry 10 (1999) 3899–3905

Easy generation of an enantiopure general indolalkaloid building block by kinetic resolution

Ming Zhao, a Chao Wang, a Shiqi Peng a, and Ekkehard Winterfeldt b

^aCollege of Pharmaceutical Sciences, Beijing Medical University, Beijing 100083, People's Republic of China ^bInstitut fur Organische Chemie der Universitat Hannover, Schneiderberg 1 B, D-30167 Hannover, Germany

Received 27 July 1999; accepted 9 September 1999

Abstract

On treatment of racemic 1-(2,2-dimethoxyethyl)-1,2,3,4-tetrahydrocarboline 7 with Boc-L-Ala and DCC the (1S)-enantiomer (1S)-7 reacted much faster than (1R)-7 and gave rise to 1-(2,2-dimethoxyethyl)-2-(N-t-Boc-L-alanyl)-1,2,3,4-tetrahydrocarboline. The untouched (1R)-enantiomer (1R)-7 could be reisolated in enantiopure form. © 1999 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

In an earlier paper we described the formation of a 2:1 mixture of the diastereomers methyl (1R,3S)-1-(2,2-dimethoxyethyl)-1,2,3,4-tetrahydrocarboline-3-carboxylate **1** and methyl (1S,3S)-1-(2,2-dimethoxyethyl)-1,2,3,4-tetrahydrocarboline-3-carboxylate **2** on treatment of L-tryptophan methyl ester with 1,1,3,3-tetramethoxypropane. To elaborate this material into the alkaloid building blocks **3b** and **4b**, which had served very well in the diastereoselective preparation of ajmalicin and other indole and oxindole-alkaloids, $^{2-4}$ the Michael-addition with methylvinylketone was studied (Scheme 1).

The reaction rate of the (1R,3S)-diastereomer 1 in this Michael-addition proved to be higher than that of the (1S,3S)-diastereomer 2, documented by the fact that after 5 days at room temperature the enantiopure ketone 5 was formed exclusively, albeit in low yield. Even if the reaction was driven to completion after 30 days, however, there was still a 2:1 mixture of epimers, with 5 prevailing.

^{*} Corresponding author. Tel: (08610)-62092274; fax: (08610)-62092311; e-mail: psqbmu@263.net.cn

Scheme 1. Enantiopure 3-acetyl-1,4,6,7,12,12b-hexahydroindolo[2,3-a]quinolizines were synthesized via Michael-addition, cyclization and dehydration

2. Results and discussion

Obviously, the Michael-addition of the nitrogen-atom and methyl vinyl ketone was under remarkable configurational control. In order to see if this has some generality the acylation process of methyl (1*R*,3*S* and 1*S*,3*S*)-1-(2,2-dimethoxyethyl)-1,2,3,4-tetrahydrocarboline-3-carboxylate with Boc-Gly in the presence of DCC was studied. The selectivity of the acylation was clearly excellent and the diastereomer methyl (1*S*,3*S*)-1-(2,2-dimethoxyethyl)-2-(*N*-*t*-Boc-glycyl)-1,2,3,4-tetrahydrocarboline-3-carboxylate **6** turned out to be the sole product of the reaction (Scheme 2).

Scheme 2. Reactions and conditions: (i) methyl vinyl ketone, room temperature, 5 days, 33% yield; (ii) Boc-Gly, DCC, 0° C, 24 h, 48% yield. The reaction rate of the (1R,3S)-diastereomer in Michael-addition was higher than that of the (1S,3S)-diastereomer; in contrast, the reaction rate of the (1S,3S)-diastereomer in acylations was higher than that of the (1R,3S)-diastereomer

Since the C_1 -configuration seemed to determine the steric outcome of the acylation process it was of course interesting to acylate racemic (1RS)-1-(2,2-dimethoxyethyl)-1,2,3,4-tetrahydrocarboline 7, which was easily generated from 1,1,3,3-tetramethoxypropane and tryptamine, with the configurationally well-defined Boc-L-Ala hoping for a kinetic resolution.

The enantiomerically pure 1-(2,2-dimethoxyethyl)-2-(*N-t*-Boc-L-alanyl)-1,2,3,4-tetrahydrocarboline **8** was obtained in 49% yield and from the non-reacted portion (1*R*)-**7** was reisolated in 49% yield (Scheme 3). Since the NMR signals of this material, in the presence of tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato]europium as shift reagent, did not show any line splitting the enantiomeric purity should be higher than 95% ee.

While (1R)-7 can be taken to 4a directly in high yield by a well established procedure, ¹ 8 needs a preceding chemical or enzymatic amide hydrolysis, which is under active investigation and optimization in our laboratory.

Finally, three compounds which are generated when **7** is formed in an excess of 1,1,3,3-tetramethoxypropane deserve a closer inspection. They were shown to be the vinylogue amide **9**, the hydroxyaldehyde **10** and the corresponding elimination product **11** by extensive NMR studies including NOE measurements (Scheme 4). Since the en–amide double bond is configurationally highly

Scheme 3. In the acylation of racemic 7 with Boc-L-Ala only enantiomer (1S)-7 was converted into enantiomerically pure amide 8; the non-reacted enantiomer (1R)-7 was reisolated

flexible under acidic conditions the aldol cyclization to form 10 and the subsequent diene formation by elimination can easily be rationalized.

Scheme 4. In the presence of an excess of 1,1,3,3-tetramethoxypropane, **7** was converted into 1-(2,2-dimethoxyethyl)2-propenanyl-1,2,3,4-tetrahydrocarboline **9**, 2-hydroxy-1,2,6,7,12,12b-hexahydroindolo[2,3-*a*]quinolizine-1-aldehyde **10** and 6,7,12,12b-tetrahydroindolo[2,3-*a*]quinolizine-1-aldehyde **11**

The results reported here underline the remarkable directing effect of substituents in the 1-position of the tetrahydrocarbolines in acylation reactions at the neighboring NH group which can lead to a clear cut kinetic resolution.

3. Experimental

All reactions were carried out under nitrogen (1 bar). ¹H NMR spectra were recorded at 500 MHz on an ARX-500 instrument in deuteriochloroform with tetramethylsilane as internal standard. IR spectra were recorded with a Perkin–Elmer 983 instrument and mass spectra with a ZAB-MS (70 ev) spectrometer. Chromatography was performed with Qingdao silica gel H. Optical rotations were determined on Schmidt and Haensch Polartronic D instruments at 20°C.

3.1. (1RS)-1-(2,2-Dimethoxyethyl)-1,2,3,4-tetrahydrocarboline 7

(a) The stirring solution of 31.2 mg (0.2 mmol) of tryptamine in 5 ml of chloroform and 3 ml of methanol was acidified with 80 mg of concentrated hydrochloric acid to pH 2 at room temperature. To this solution 32.8 mg (0.2 mmol) of 1,1,3,3-tetramethoxypropane was added. The reaction mixture was stirred at room temperature for 45 h, by which time TLC analysis (CHCl₃:CH₃OH, 16:1) indicated complete disappearance of tryptamine, and neutralized with sodium carbonate. After filtration and evaporation the residue was purified by chromatography with CHCl₃:CH₃OH (30:1) and furnished 39.0 mg (75%) of 7, as a colorless powder. Mp 148–150°C; IR (KBr): ν /cm⁻¹=3176 and 3119 (NH), 3090 (C=C-H), 2930, 2850 and 2736 (CH, CH₂ and CH₃), 1605 (NH), 1321 and 1280 (C-O-C), 1124, 1075 and 738

(1,2-disubstituted phenyl); ${}^{1}H$ NMR (DMSO- d_{6}): δ =1.859 [ddd, J=7.5 Hz, J=3.4 Hz, J=1.6 Hz, 1H, (MeO)₂CH CH_{2}], 1.898 (s, 1H, NH), 2.339 [ddd, J=7.5 Hz, J=3.4 Hz, J=1.6 Hz, 1H, (MeO)₂CH CH_{2}], 2.689 (m, J=12.0 Hz, 2H, CH_{2} CH₂NHCH), 3.024 (m, J=12.1 Hz, 2H, CH_{2} CH₂NHCH), 3.306 (s, 3H, OCH₃), 3.332 (s, 3H, OCH₃), 4.363 (dd, J=7.5 Hz, J=1.6 Hz, 1H, CH_{2} CH₂NHCH), 4.741 [dd, J=7.5 Hz, J=3.4 Hz, 1H, (MeO)₂CH], 6.964 (t, J=7.2 Hz, 1H, aromatic H), 7.055 (t, J=6.9 Hz, 1H, aromatic H), 7.306 (d, J=7.8 Hz, 1H, aromatic H), 7.393 (d, J=7.2 Hz, 1H, aromatic H), 9.472 (s, 1H, pyrrole NH); MS (100°C), m/e (%): 260 (33.0) [M⁺], 228 (13.0) [M⁺-MeOH], 213 (32.0) [M⁺-MeOH-CH₃], 199 (21) [M⁺-(MeO)₂+H], 171 (100) [M⁺-(MeO)₂-CHCH₂]. $C_{15}H_{20}N_{2}O_{2}$ calcd: C, 69.21; H, 7.74; N, 10.76; found: C, 69.30; H, 7.80; N, 10.80; mol. mass: 260.34.

(b) Using procedure (a) with excess (49.2 mg, 0.30 mmol) of 1,1,3,3-tetramethoxypropane, besides 42 mg (76%) of **7**, 5 mg of 1-(2,2-dimethoxyethyl)-2-propenanyl-1,2,3,4-tetrahydrocarboline **9**, 3 mg of 2-hydroxy-1,2,6,7,12,12b-hexahydroindolo[2,3-*a*]-quimolizine-1-aldehyde **10** and 4 mg of 6,7,12,12b-tetrahydroindolo[2,3-*a*]quinolizine-1-aldehyde **11** were isolated.

Compound **9**: IR (KBr): v/cm^{-1} =3450 (NH), 3027 and 3010 (C=C-H), 2960 and 2830 (CH, CH₂ and CH₃), 2815 and 2725 (CHO), 1730 (C=O), 1630 (olefinic C=C), 1600, 1500, 1450 and 1400 (aromatic C=C), 1380 (CH₃), 1345 (C-O-C), 1115, 1080 and 1050 (1,2-disubstituted phenyl); ${}^{1}H$ NMR: δ/ppm =2.23 [m, 1H, (MeO)₂CH*CH*₂], 2.28 [m, 1H, (MeO)₂CH*CH*₂], 2.89 (m, 1H, *CH*₂CH₂N), 2.98 (m, 1H, *CH*₂CH₂N), 3.46 (s, 3H, OCH₃), 3.50 (s, 3H, OCH₃), 3.73 (m, 1H, CH₂*CH*₂N), 3.82 (m, 1H, CH₂*CH*₂N), 4.64 [s, broad, 1H, (MeO)₂CHCH₂*CH*], 5.00 [s, broad, 1H, (MeO)₂*CH*CH₂CH], 5.49 (t, broad, 1H, NCH=*CH*CHO), 7.20 (d, broad, *J*=9.0 Hz, 1H, N*CH*=*CH*CHO), 7.18 (t, *J*=7.3 Hz, 1H, aromatic H), 7.23 (t, *J*=7.7 Hz, 1H, aromatic H), 7.39 (d, *J*=8.0 Hz, 1H, aromatic H), 7.52 (d, *J*=7.8 Hz, 1H, aromatic H), 8.97 (s, 1H, pyrrole H), 9.18 (d, *J*=8.0 Hz, 1H, *CH*O); FAB-MS, *m/e*: 315 (20) [M+H]⁺. C₁₈H₂₂N₂O₃ calcd: C, 68.77; H, 7.05; N, 8.91; found: C, 68.90; H, 7.14; N, 8.71; mol. mass: 314.16.

Compound **10**: IR (KBr): v/cm^{-1} =3500–3400 (NH and OH), 3025 and 3010 (C=C-H), 2965 and 2820 (CH, CH₂ and CH₃), 2820 and 2730 (CHO), 1740 (C=O), 1635 (olefinic C=C), 1605, 1515, 1450 and 1415 (aromatic C=C), 1385 (CH₃), 1350 (C-O-C), 1120, 1095 and 1050 (1,2-disubstituted phenyl); ¹H NMR: δ /ppm=1.78 (s, 1H, OH), 1.85 (m, 1H, NCH*CH*CHO), 3.07 (t, *J*=6.5 Hz, 2H, *CH*₂CH₂N), 3.55 (m, *J*=6.5 Hz, 2H, CH₂*CH*₂N), 4.94 [t, *J*=5.0 Hz, 1H, NCHCH(CHO)*CH*(OH)], 5.41 [m, 1H, N*CH*CH(CHO)CH(OH)], 7.08 [t, *J*=5.1 Hz, 1H, NCH=CHCH(OH)], 8.32 [d, *J*=12.2 Hz, 1H, N*CH*=CHCH(OH)], 7.17 (t, *J*=5.0 Hz, 1H, aromatic H), 7.25 (t, *J*=10.0 Hz, 1H, aromatic H), 7.42 (d, *J*=10.0 Hz, 1H, aromatic H), 7.60 (d, *J*=10.0 Hz, 1H, aromatic H), 9.10 (m, *J*=5.0 Hz, 1H, C*H*O), 10.10 (s, 1H, pyrrole NH); FAB-MS, *m/e*: 269 (31) [M+H]⁺. C₁₆H₁₆N₂O₂ calcd: C, 71.62; H, 6.01; N, 10.44; found: C, 71.80; H, 6.15; N, 10.20; mol. mass: 268.12.

Compound **11**: IR (KBr): v/cm^{-1} =3449 (NH), 3030 and 3011 (C=C-H), 2960 and 2819 (CH, CH₂ and CH₃), 2820 and 2720 (CHO), 1729 (C=O), 1629 (olefinic C=C), 1600, 1510, 1460 and 1400 (aromatic C=C), 1120, 1085 and 1050 (1,2-disubstituted phenyl); ¹H NMR: δ /ppm=3.07 (t, J=6.5 Hz, 2H, CH_2 CH₂NCH), 3.55 (m, J=6.5 Hz, 2H, CH₂ CH_2 NCH), 5.13 (s, 1H, CH₂CH₂NCH), 6.70 (m, J=5.0 Hz, 1H, NCH=CHCH=CCHO), 7.08 (t, J=0.5 Hz, 1H, NCH=CHCH=CCHO), 7.17 (t, J=5.0 Hz, 1H, aromatic H), 7.25 (t, J=10.0 Hz, 1H, aromatic H), 7.42 (d, J=10.0 Hz, 1H, aromatic H), 7.60 (d, J=10.0 Hz, 1H, aromatic H), 8.32 (d, J=12.2 Hz, 1H, NCHCHCH=CCHO), 9.10 (t, J=5.0 Hz, 1H, CHO), 10.10 (s, 1H, pyrrole H); FAB-MS, m/e: 251 (25) [M+H]⁺. C₁₆H₁₄N₂O calcd: C, 76.78; H, 5.64; N, 11.19; found: C, 76.85; H, 5.49; N, 11.00; mol. mass: 250.11.

3.2. Methyl (1S,3S)-1-(2,2-dimethoxyethyl)-2-(N-t-Boc-glycyl)-1,2,3,4-tetrahydrocarboline-3-carboxylate **6**

A solution of 35.0 mg (0.20 mmol) of Boc-Gly, 27.0 mg (0.20 mmol) of HOBt, 46.0 mg (0.22 mmol) of DCC and 5 ml of anhydrous THF was stirred at 0°C for 24 h. The DCU precipitated was removed by filtration. To the filtrate 63.6 mg (0.2 mmol) of methyl (1*S*,3*S* and 1*R*,3*S*)-1-(2,2-dimethoxyethyl)-1,2,3,4-tetrahydrocarboline-3-carboxylate (2 and 1), which was prepared according to the literature,³ and 22.5 mg (0.22 mmol) of *N*-methylmorpholine were added. The reaction mixture was stirred at room temperature for 1 h. On evaporation the residue was purified and separated by chromatography (CHCl₃:CH₃OH, 30:1) to afford 45.9 mg (48%) of (1*S*,3*S*)-6, and 30.8 mg (48%) of 1.

Compound 1: IR (KBr): ν/cm^{-1} =3441 and 3401 (NH), 3010 (C=C-H), 2960 and 2838 (CH, CH₂ and CH₃), 1742 (C=O), 1600, 1500 and 1456 (aromatic C=C), 1325 and 1273 (C-O-C), 1125 and 1072 (1,2-disubstituted phenyl). ¹H NMR: δ/ppm =2.20 [t, J=4.1 Hz, 1H, (MeO)₂CHCH₂CH], 2.31 [t, J=7.2 Hz, 1H, (MeO)₂CHCH₂CH], 2.40 (s, 1H, NH), 2.94 (m, J=2.1 Hz, 1H, CH₂CHCO₂Me), 3.13 (m, J=2.0 Hz, 1H, CH₂CHCO₂Me), 3.35, [s, 3H, CH(OCH₃)₂], 3.47 [s, 3H, CH(OCH₃)₂], 3.74 (s, 3H, CO₂CH₃), 3.97 (dd, J=7.0 Hz, J=3.1 Hz, 1H, CHNHCHCO₂Me), 4.35 (t, J=7.0 Hz, 1H, CHNHCHCO₂Me), 4.65 [t, J=7.0 Hz, 1H, (MeO)₂CHCH₂CH] 7.15 (m, J=7.0 Hz, 2H, aromatic H), 7.34 (d, J=8.0 Hz, 1H, aromatic H), 7.49 (d, J=8.0 Hz, 1H, aromatic H), 8.54 (s, 1H, pyrrole NH); FAB-MS, m/e (%): 319 (36.0) [M+H]⁺; α =-46.8 (c 0.05 in CHCl₃).

Compound (1*S*,3*S*)-**6**: IR (KBr): v/cm^{-1} =3450 and 3400 (NH), 3005 (C=C-H), 2960 and 2830 (CH, CH₂, and CH₃), 1745 and 1706 (ester C=O), 1670 (amide C=O), 1600, 1545 and 1430 (aromatic C=C), 1395, 1380 and 1370 (CH₃), 1325 and 1270 (C-O-C), 1120 and 1070 (1,2-disubstituted phenyl); ¹H NMR: δ /ppm=1.50 [s, 9H, -C(*CH*₃)₃], 2.18 (m, 1H, CH*CH*₂CH(OCH₃)₂], 2.43 [m, 1H, CH*CH*₂CH(OCH₃)₂], 3.08 (dd, *J*=4.7 Hz, *J*=1.5 Hz, 1H, *CH*₂CHCOOCH₃), 3.60 (m, 1H, *CH*₂CHCOOCH₃), 3.66 [s, 6H, CH₂CH(O*CH*₃)₂], 3.46 (s, 3H, COO*CH*₃), 4.06 (dd, *J*=12.8 Hz, *J*=0.4 Hz, 1H, NCO*CH*₂NH), 4.21 (dd, *J*=12.2 Hz, *J*=0.4 Hz, 1H, NCO*CH*₂NH), 4.82 (d, *J*=5.5 Hz, 1H, CH₂*CH*COOCH₃), 4.93 [dd, *J*=9.6 Hz, *J*=3.2 Hz, 1H, *CH*CH₂C(OCH₃)₂], 5.38 [d, *J*=7.6 Hz, 1H, CH₂*CH*(OCH₃)₂], 5.70 (m, 1H, NCOCH₂NHCO), 7.14 (t, *J*=7.1 Hz, 1H, aromatic H), 7.24 (t, *J*=7.3 Hz, 1H, aromatic H), 7.40 (d, *J*=8.0 Hz, 1H, aromatic H), 7.57 (d, *J*=8.0 Hz, 1H, aromatic H), 9.18 (s, 1H, pyrrole NH); FAB-MS, *m/e* (%): 476 (40.1) [M+H]⁺; [α]=-13.0 (*c* 0.02 in CHCl₃). C₂₄H₃₃N₃O₇ calcd: C, 60.62; H, 6.99; N, 8.84; found: C, 60.80; H, 6.90; N, 8.76; mol. mass: 475.54.

3.3. Methyl (1R,3S)-1-(2,2-dimethoxyethyl)-2-(N-t-Boc-glycyl)-1,2,3,4-tetrahydrocarboline-3-carboxylate **6**

Using the procedure preparing (1*S*, 3*S*)-**6** (reaction time 60 h) from 16.0 mg (0.05 mmol) of **1** 23.0 mg (96%) of (1R,3S)-**6** were obtained.

Compound (1*R*,3*S*)-**6**: IR (KBr): v/cm^{-1} =3445 and 3395 (NH), 3010 (C=C-H), 2965 and 2841 (CH, CH₂ and CH₃), 1740 and 1700 (ester C=O), 1675 (amide C=O), 1605, 1550 and 1450 (aromatic C=C), 1395, 1380 and 1369 (CH₃), 1321 and 1268 (C-O-C), 1119 and 1072 (1,2-disubstituted phenyl); ¹H NMR: δ /ppm=1.50 [s, 9H, -C(*CH*₃)₃], 2.30 [m, 1H, CH*CH*₂CH(OCH₃)₂], 2.62 [m, 1H, CH*CH*₂CH(OCH₃)₂], 3.14 [m, 1H, *CH*₂CHCOOCH₃], 3.34 (m, 1H, *CH*₂CHCOOCH₃), 3.52 [s, 6H, CH₂CH(O*CH*₃)₂], 3.57 (s, 3H, COO*CH*₃), 3.80 (d, *J*=15.1 Hz, 2H, NCO*CH*₂NH), 4.70 (m, 1H, CH₂CHCOOCH₃), 4.82 [m, 1H, *CH*CH₂CH-(OCH₃)₂], 5.50 (m, 1H, NCOCH₂NHCO), 5.54 [m, 1H, CHCH₂CH(OCH₃)₂], 7.15 (t, *J*=7.2 Hz, 1H, aromatic H), 7.20 (t, *J*=6.5 Hz, 1H, aromatic H), 7.40 (d, *J*=7.7 Hz, aromatic H), 7.52 (d, *J*=7.5 Hz, 1H, aromatic H), 8.55 (s, 1H, pyrrole NH); FAB-MS, *m/e* (%):

476 (30.2) $[M+H]^+$; $[\alpha]=+80$ (c 0.02 in CHCl₃). $C_{24}H_{33}N_3O_7$ calcd: C, 60.62; H, 6.99; N, 8.84; found: C, 60.70; H, 6.89; N, 8.69; mol. mass: 475.54.

3.4. (1S)-1-(2,2-Dimethoxyethyl)-2-(N-t-Boc-L-alanyl)-1,2,3,4-tetrahydrocarboline 8

A solution of 37.8 mg (0.20 mmol) of Boc-L-Ala, 27.0 mg (0.20 mmol) of HOBt, 46.0 mg (0.22 mmol) of DCC and 5 ml of anhydrous THF was stirred at 0°C for 24 h. The DCU precipitated was removed by filtration. To the filtrate 52.0 mg (0.2 mmol) of **7** and 22.5 mg (0.22 mmol) of *N*-methylmorpholine were added. The reaction mixture was stirred at room temperature for 2 h. On evaporation the residue was purified and separated by chromatography (CHCl₃:CH₃OH, 30:1) to afford 42.0 mg (49%) of (1S)-8 and 25.5 mg (49%) of (1R)-7.

Compound (1*S*)-**8**: IR (KBr): v/cm^{-1} =3446 and 3410 (NH), 3009 (C=C-H), 2961 and 2842 (CH, CH₂ and CH₃), 1711 (ester C=O), 1647 (amide C=O), 1610, 1550 and 1440 (aromatic C=C), 1395, 1380 and 1374 (CH₃), 1315 and 1269 (C-O-C), 1124 and 1070 (1,2-disubstituted phenyl); ¹H NMR: δ /ppm=1.38 [d, J=6.9 Hz, 3H, CO(CH_3)NHCO], 1.50 [s, 9H, C(CH_3)₃], 2.18 [dm, J=7.5 Hz, J=5.6 Hz, 2H, CH CH_2 CH(OCH₃)₂], 2.93 (m, J=3.4 Hz, 1H, CH_2 CH₂NCO), 3.15 (m, J=3.4 Hz, 1H, CH_2 CH₂NCO), 3.42 (s, 3H, O CH_3), 3.50 (s, 3H, O CH_3), 3.52 (m, J=13.8 Hz, 1H, CH₂ CH_2 NCO), 4.20 (m, J=13.8 Hz, 1H, CH₂ CH_2 CO), 4.76 [m, 1H, CHCH₂CH(OCH₃)₂], 4.78 [m, 1H, COCH(CH₃)NHCO], 5.60 [d, J=8.2 Hz, 1H, COCH(CH₃)NHCO], 5.66 [dd, J=7.5 Hz, J=5.6 Hz, 1H, CHCH₂CH(OCH₃)₂], 7.12 (t, J=7.8 Hz, 1H, aromatic H), 7.21 (t, J=6.1 Hz, 1H, aromatic H), 7.37 (d, J=8.1 Hz, 1H, aromatic H), 7.50 (d, J=7.8 Hz, 1H, aromatic H), 8.65 (s, 1H, pyrrole NH); FAB-MS, m/e (%): 432 (30) [M+H]⁺; [α]=-51.7 (c 1.2 in CHCl₃:CH₃OH, 1:1). C₂₃H₃₃N₃O₅ calcd: C, 61.73; H, 7.43; N, 9.39; found: C, 61.84; H, 7.30; N, 9.48; mol. mass: 431.53 (MS).

Compound (1*R*)-7: mp 144–145°C; IR (KBr): v/cm^{-1} =3176 and 1605 (NH), 3084 (C=CH), 2941 and 2742 (CH, CH₂ and CH₃), 1318 and 1280 (C-O-C), 1122, 1073 and 736 (disubstituted phenyl CH); ¹H NMR: δ/ppm =1.25 (s, 1H, NH), 2.19 [ddd, J=14.0 Hz, J=8.5 Hz, J=4.6 Hz, 1H, (MeO)₂CHCH₂], 2.84 [ddd, J=14.0 Hz, J=4.6 Hz, J=3.0 Hz, 1H, (MeO)₂CHCH₂], 3.05 (m, J=11.9 Hz, 2H, CH₂CH₂NH), 3.45 (m, J=11.0 Hz, 2H, CH₂CH₂NH), 3.50 (s, 3H, OCH₃), 3.55 (s, 3H, OCH₃), 4.60 [dd, J=8.5 Hz, J=3.0 Hz, 1H, CHCH₂CH(OCH₃)₂], 4.69 [t, J=4.6 Hz, 1H, (MeO)₂CH], 7.13 (t, J=6.9 Hz, 1H, aromatic H), 7.17 (t, J=7.1 Hz, 1H, aromatic H), 7.21 (d, J=7.1 Hz, aromatic H), 7.37 (d, J=8.1 Hz, 1H, aromatic H), 9.10 (s, 1H, pyrrole NH); MS (120°C), m/e (%): 260 (32.5) [M⁺], 227 (100) [M⁺-MeOH-H], 213 (30.5) [M⁺-MeOH-CH₃], 199 (21.7) [M⁺-2OCH₃+H], 171 (100) [M⁺-(MeO)₂CHCH₂]; [α]=+20.8 (c 0.93 in MeOH). C₁₅H₂₀N₂O₂ calcd: C, 69.21; H, 7.74; N, 10.76; found: C, 69.32; H, 7.85; N, 10.69; mol. mass: 260.34 (MS).

3.5. (1R)-1-(2,2-Dimethoxyethyl)-2-(N-t-Boc-L-alanyl)-1,2,3,4-tetrahydrocarboline 8

Using the procedure for preparing (1*S*)-**8** (reaction time 70 h) from 13.0 mg (0.05 mmol) of (1*R*)-**7** 21.0 mg (97%) of (1*R*)-**8** were obtained. IR (KBr): v/cm^{-1} =3450 and 3401 (NH), 3015 (C=C-H), 2960 and 2838 (CH, CH₂ and CH₃), 1700 (ester C=O), 1670 (amide C=O), 1607, 1551 and 1445 (aromatic C=C), 1396, 1381 and 1376 (CH₃), 1320 and 1270 (C-O-C), 1120 and 1075 (1,2-disubstituted phenyl); ¹H NMR: δ /ppm=1.43 [d, *J*=6.9 Hz, 3H, NCOCH(*CH*₃)NHCO], 1.50 [s, 9H, C(*CH*₃)₃], 2.20 [m, *J*=14.0 Hz, 2H, CH*CH*₂CH(OCH₃)₂], 2.91 (m, 1H, *CH*₂CH₂NCO), 2.93 (m, 1H, *CH*₂CH₂NCO), 3.46 (s, 3H, *OCH*₃), 3.50 (s, 3H, *OCH*₃), 3.52 (m, *J*=13.5 Hz, 1H, CH₂*CH*₂NCO), 4.14 (dm, *J*=13.5 Hz, *J*=4.6 Hz, 1H, CH₂*CH*₂NCO), 4.76 [m, 1H, NCOCH(CH₃)NHCO], 4.78 [m, 1H, *CH*CH₂CH(OCH₃)₂], 5.57 [d, *J*=7.9 Hz, 1H, NCOCH(CH₃)*NH*CO], 5.78 [t, *J*=6.9 Hz, 1H, CHCH₂*CH*(OCH₃)₂], 7.19 (t, *J*=7.5 Hz, 1H, NCOCH(CH₃)*NH*CO], 5.78 [t, *J*=6.9 Hz, 1H, CHCH₂*CH*(OCH₃)₂], 7.19 (t, *J*=7.5 Hz, 1H, CHCH₂*CH*(OCH₃)₃), 7.19 (t, *J*=7.5 Hz, 1H, CHCH₂*CH*(OCH₃))

1H, aromatic H), 7.24 (t, J=6.5 Hz, 1H, aromatic H), 7.35 (d, J=7.2 Hz, 1H, aromatic H), 7.50 (d, J=7.6 Hz, 1H, aromatic H), 8.60 (s, 1H, pyrrole NH); FAB-MS, m/e (%): 432 (35) [M+H]⁺; [α]=+32.6 (c 1.9 in CHCl₃:CH₃OH, 1:1). C₂₃H₃₃N₃O₅ calcd: C, 61.73; H, 7.43; N, 9.39; found: C, 61.59; H, 7.49; N, 9.51; mol. mass: 431.24 (MS).

Acknowledgements

Shiqi Peng wishes to thank the National Natural Science Foundation of China for financial support.

References

- 1. Peng, S. Q.; Zhang, L.; Cai, M. S.; Winterfeldt, E. Liebigs Ann. Chem. 1993, 141-146.
- 2. Winterfeldt, E.; Gaskell, A. J.; Korth, T.; Radunz, H. E.; Walkowiak, M. Chem. Ber. 1969, 102, 3558–3572.
- 3. Winterfeldt, E.; Riesner, H. Synthesis 1970, 261–262.
- 4. Benz, G.; Riesner, H.; Winterfeldt, E. Chem. Ber. 1975, 108, 248-259.